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A Powerful and Robust Method for Mapping Quantitative Trait Loci
in General Pedigrees
G. Diao and D. Y. Lin
Department of Biostatistics, University of North Carolina, Chapel Hill

The variance-components model is the method of choice for mapping quantitative trait loci in general human
pedigrees. This model assumes normally distributed trait values and includes a major gene effect, random polygenic
and environmental effects, and covariate effects. Violation of the normality assumption has detrimental effects on
the type I error and power. One possible way of achieving normality is to transform trait values. The true trans-
formation is unknown in practice, and different transformations may yield conflicting results. In addition, the
commonly used transformations are ineffective in dealing with outlying trait values. We propose a novel extension
of the variance-components model that allows the true transformation function to be completely unspecified. We
present efficient likelihood-based procedures to estimate variance components and to test for genetic linkage.
Simulation studies demonstrated that the new method is as powerful as the existing variance-components methods
when the normality assumption holds; when the normality assumption fails, the new method still provides accurate
control of type I error and is substantially more powerful than the existing methods. We performed a genomewide
scan of monoamine oxidase B for the Collaborative Study on the Genetics of Alcoholism. In that study, the results
that are based on the existing variance-components method changed dramatically when three outlying trait values
were excluded from the analysis, whereas our method yielded essentially the same answers with or without those
three outliers. The computer program that implements the new method is freely available.

Introduction

Mapping genes associated with various traits and dis-
eases is one of the most important research areas in human
genetics. A major effort in the gene-mapping process is
the detection of loci that influence quantitative traits,
which are referred to as “quantitative trait loci” (QTLs).
Because complex diseases are associated with complex
traits, many of which are quantitative, QTL analysis plays
a critical role in the genetic dissection of complex human
diseases. The recent explosion in genetic mapping data
has placed a premium on the development of statistical
methods for mapping QTLs (Pratt et al. 2000). Feingold
(2001, 2002) provided excellent reviews of QTL-mapping
methods, all of which are based on the principle that
family members who have similar trait values should
have higher-than-expected levels of identity-by-descent
(IBD) allele sharing near the genes that influence those
traits.

The simplest QTL-mapping method is Haseman-El-
ston (1972) regression, which regresses the squared dif-
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ferences in the trait values of sib pairs on their IBD shar-
ing at a putative locus. Several groups (Wright 1997;
Drigalenko 1998; Elston et al. 2000; Xu et al. 2000;
Forrest 2001; Sham and Purcell 2001; Visscher and
Hopper 2001) have attempted to improve the power of
this regression by use of both the squared trait sum and
the squared trait difference, whereas others (Tang and
Siegmund 2001; Putter et al. 2002; Wang and Huang
2002) have proposed score statistics with similar prop-
erties. All these methods are limited to sibships or, in
many cases, to sib pairs. Sham et al. (2002) offered a
regression method for extended pedigrees. The idea is
to reverse the Haseman-Elston paradigm by regressing
the IBD sharing on an appropriate function of the trait
values. This method requires specification of the cor-
relation for each type of relative pair and does not ac-
commodate covariate effects, gene-environment inter-
actions, epistasis, or pleiotropy. Its type I error is inflated
in some circumstances. Chiou et al. (2005) proposed to
estimate the probability that a sib pair shares the same
allele at the trait locus as a nonparametric function of
the trait values.

An alternative approach is the variance-components
model (Goldgar 1990; Schork 1993; Amos 1994; Fulker
et al. 1995; Almasy and Blangero 1998; Pratt et al. 2000).
This model decomposes the overall phenotypic varia-
bility among individuals within pedigrees into fixed ef-
fects due to observed covariates, random effects due to
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Figure 1 Multipoint LOD scores from the existing variance-components method for chromosomes 1, 4, 9, and 12 in the COGA study.
Outl p outliers included; No Outl p outliers excluded.

an unobserved trait-affecting major locus, random poly-
genic effects, and residual nongenetic variance. The an-
alysis is typically based on maximum-likelihood estima-
tion. This approach is applicable to any type of pedigree
and has substantially higher power than Haseman-El-
ston and related methods (Amos et al. 1996; Williams
et al. 1997; Almasy and Blangero 1998; Pratt et al.
2000; Forrest 2001; Tang and Siegmund 2001; Feingold
2001, 2002). “It has superseded Haseman-Elston as the
method of choice for most studies, particularly when
large pedigrees are used” (Feingold 2002, p. 217).

The variance-components model assumes that the trait
values of family members follow a multivariate normal
distribution. When this assumption is violated, the pa-
rameter estimators can be severely biased, the type I
error can be substantially inflated, and the power can
be drastically reduced (Amos et al. 1996; Allison et al.
1999; Tang and Siegmund 2001; Feingold 2001, 2002).
In this sense, the variance-components approach is less
robust than Haseman-Elston regression (Allison et al.
2000). When there is nonnormality, one strategy is to
perform a parametric transformation, such as the log
transformation or square-root transformation on the
trait values to approximate normality (Allison et al.
2000; Geller et al. 2003; Strug et al. 2003). It is often
difficult to find an appropriate transformation, espe-
cially when there are negative trait values, and different
transformations may yield conflicting results. Incorrect

transformations will cause biased parameter estimators,
inflated type I error, and loss of power. Furthermore,
parametric transformations are not effective in handling
outlying trait values, which can create spurious linkage
signals.

Figure 1 plots the LOD scores for the variance-com-
ponents analysis of monoamine oxidase B (MAOB) from
the Collaborative Study on the Genetics of Alcoholism
(COGA), which is a multicenter study for identification
of genes that cause alcohol dependence (Begleiter et al.
1995). MAOB is a mitochondrial enzyme whose mea-
surement is positive and can be large. The original an-
alysis showed significant evidence of linkage on chro-
mosomes 1, 4, 9, and 12. Three members in a family
had unusually large MAOB values. When those three
individuals were removed from the analysis, the evi-
dence of linkage completely disappeared. This kind of
phenomenon has deterred human geneticists from per-
forming QTL analysis (Allison et al. 1999).

A question naturally arises as to whether there exists
a method that retains the robustness of Haseman-Elston
regression while approaching the greater power of the
variance components model (Feingold 2001). The pres-
ent article provides a positive answer to this question.
We propose a novel modification of the variance-com-
ponents model to allow a completely arbitrary trans-
formation function of trait values. We then derive maxi-
mum-likelihood estimators of variance components and
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Figure 2 Histograms of MAOB activity in the COGA study

construct likelihood-ratio statistics for testing the exis-
tence of QTLs at arbitrary locations along the genome.
We implement the new method in a free computer pro-
gram. Extensive simulation studies demonstrate that our
new method is as efficient as the existing variance-com-
ponent methods when the normality assumption holds;
under nonnormality, the new method continues to have
proper type I error and good power, whereas the existing
methods have inflated type I error and diminished
power. Unlike existing methods, the new method is in-
sensitive to outliers. The application of the new method
to the aforementioned COGA data resolved the dilem-
ma caused by the three outlying observations.

Material and Methods

Consider n general pedigrees or families and relativesni

in the ith family, . Let denote the trait valuei p 1, … ,n Yij

for the jth relative of the ith family and a vector ofX ij

directly observable covariates. At each genome position
to be examined, we consider a variance-components
model that partitions the total phenotypic variance into
components that are due to a major gene at the locus,
other unlinked genes, covariates, and environmental fac-
tors:

TH(Y ) p b X � g � G � e , (1)ij ij ij ij ij
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Figure 3 Multipoint LOD scores from the new method for chromosomes 1, 4, 9, and 12 in the COGA study. Outl p outliers included;
No Outl p outliers excluded.

where H is an unknown increasing function, is a setb

of fixed effects, is a random effect due to the majorgij

gene, is a random effect due to other genes at un-Gij

linked loci, and is an individual-specific residual en-eij

vironmental effect. The random effects are assumed to
be normally distributed with mean 0 and variances ,2jg

, and . Because H is an arbitrary function, we con-2 2j jG e

strain the residual variance to be 1, and we do not2je

include an intercept in the model, since the intercept can
be absorbed by H.

Assume that , , and are not correlated. Theng G eij ij ij

the total trait variance is 2 2 2Var [H(Y )] j p j � j �ij g G

. The overall heritability of the trait is2je

2 2j � jg G2h p ,2j

and the heritability attributable to the examined locus
is

2jg2h p .g 2j

The genetic variances can be optionally decomposed into
additive and dominant effects, with and2 2 2j p j � jg ga gd

. We may include a household-specific2 2 2j p j � jG Ga Gd

random effect in the model, since the relatives in a
household share the same environment. The model can
also be easily extended to include interactions between

different effects as well as multiple trait-affecting loci.
For simplicity of description, we focus on equation (1).

We refer to equation (1) as a semiparametric linear
transformation model with random effects or as semi-
parametric variance-components model because the true
transformation function H is unspecified. By contrast,
the existing variance-components model is parametric,
because the transformation is assumed to be known or
is implicitly incorporated in the definition of Y. Allowing
an unknown transformation function is equivalent to
allowing an arbitrary trait distribution, in that, for any
distribution of Y, there always exists a transformation
H such that has the standard normal distribution.H(Y)
In this sense, equation (1) generalizes the existing vari-
ance-components model to allow an arbitrary trait
distribution.

The trait covariance between any two pedigree mem-
bers can be expressed as a weighted sum of the variance
components

Cov [H(Y ),H(Y )]ij ik

2 2 2 2 2j � j � j � j � j if j p kga gd Ga Gd ep 2 2 2 2{p j � d j � 2F j � D j if j ( k ,ijk ga ijk gd ijk Ga ijk Gd

(2)

where is the proportion of alleles at the major locuspijk

that are IBD in the jth and kth relatives of the ith family,
is the probability that both alleles at the locus aredijk
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Figure 4 Histograms of trait values under various transformations and plots of the true, square-root, log, and estimated transformations
for a simulated data set with 200 sib trios.

IBD, is the kinship coefficient of relatives j and k,Fijk

and is the expected probability that the relativesD ijk

share both alleles IBD. Note that and are deter-p dijk ijk

mined by the genotyping data, whereas and de-F Dijk ijk

pend on only the degree of relatedness. We can infer the
IBD allele–sharing probabilities at an arbitrary genome
position by using the exact multipoint algorithm (Lan-
der and Green 1987) implemented in GENEHUNTER
(Kruglyak et al. 1996) or the approximation given in
SOLAR (Almasy and Blangero 1998).

Write . Let denote the variance param-H(y)L(y) p e g

eters , and let denote the pa-2 2 2 2 2j , j , j , j , and j vga gd Ga Gd e

rameters and . The log likelihood for is givenb, g L(7) v

as

n n1 1 T �1c � log F det (V)F � (H � X b) V� �i i i i2 2ip1 ip1

n ni l(Y )ij#(H � X b) � log , (3)��i i
L(Y )ip1 jp1 ij

where c is a constant, is the matrix of covariates forX i



102 Am. J. Hum. Genet. 77:97–111, 2005

Table 1

Type I Error and Power (%) of Likelihood-Ratio Tests under Nonnormality, with 200 Sib Trios

MODEL

TYPE I ERROR AND POWER (%) FOR

Existing Methods

New Method True Square Root Log Untransformed

a p 5 a p 1 a p .1 a p 5 a p 1 a p .1 a p 5 a p 1 a p .1 a p 5 a p 1 a p .1 a p 5 a p 1 a p .1

a 4.97 .99 .13 4.80 .92 .10 6.84 1.96 .31 6.42 1.68 .29 14.71 7.39 3.37
b 24.43 8.69 1.73 24.60 8.58 1.66 24.48 10.06 2.66 24.52 9.32 2.34 26.70 14.60 6.93
c 60.40 33.75 12.23 60.64 33.83 12.07 55.30 31.22 12.16 55.75 31.46 11.73 43.75 27.11 13.65
d 5.02 .85 .10 5.02 .85 .08 5.74 1.39 .17 5.70 1.11 .18 9.70 4.08 1.82
e 21.89 7.06 1.06 21.94 7.18 1.14 21.27 7.62 1.34 21.41 6.76 1.33 19.55 8.74 3.52
f 54.09 27.43 7.52 54.23 28.08 8.04 49.47 24.37 7.54 50.07 25.06 6.98 34.81 17.61 7.32

the ith family, is the variance-covariance matrix ofVi

the ith family derived from equation (2), is the de-l(7)
rivative of , and is the vector ofL(7) H [logL(Y ), … ,i i1

. This is a nonparametric likelihood (Bickellog L(Y )]ini

et al. 1993), in that the function or is completelyH(7) L(7)
unspecified.

In the current variance-components literature, the
transformation function H is assumed to be known, so
that the log likelihood takes the form

n1
c � log F det (V)F� i2 ip1

n1 T �1� (H � X b) V (H � X b) .� i i i i i2 ip1

There are two key differences between this parametric
log likelihood and the nonparametric log likelihood given
in expression (3). First, the last term of expression (3)
does not enter into the parametric log likelihood. Sec-
ond, the values of are known in the parametricH(Y )ij

log likelihood but are unknown function of the trait
values in the nonparametric log likelihood.

We wish to estimate the finite-dimensional parameters
and , along with the infinite-dimensional parameterb g

, by maximizing the nonparametric log likelihoodL(7)
given in (3). The maximum of (3) is infinity if isL(7)
restricted to be absolutely continuous, since we can al-
ways choose some function with fixed values atL(y)
the while letting go to infinity. Thus, we allowY l(Y )ij ij

to be right-continuous and maximize the functionL(7)

n1
log L(v) p c � log F det (V)F� i2 ip1

n1 T �1� (H � X b) V (H � X b)� i i i i i2 ip1

n ni L{Y }ij� log , (4)��
L(Y )ip1 jp1 ij

where is the jump size of at ; that is,L{Y } L(y) y p Yij ij

the value of at minus its value right beforeL(y) y p Yij

. The resultant estimator, denoted by , isˆ ˆ ˆˆY v p (b,g,L)ij

the maximum-likelihood estimator of or, more pre-v

cisely, the nonparametric maximum-likelihood estima-
tor (Bickel et al. 1993).

It can be shown that is a step function with jumpsL̂(7)
only at the observed values of . Thus, is obtainedˆY vij

by maximizing (4) over , and (b, g L{Y } i p 1, … ,n;ij

). To ensure positive estimators for the jumpj p 1, … ,ni

sizes and variance parameters, we reparameterize L{Y }ij

and as and in the maximization. Theg log (L{Y }) log (g)ij

maximization is realized via the quasi-Newton algo-
rithm (Press et al. 1992). We chose the initial values
of in accordance with a common transformation,L{Y }ij

such as the log transformation. The first derivatives of
(4) with respect to the unknown parameters are given
in appendix A. In those expressions, the unknown pa-
rameters depend on the only through the ranks ofYij

the . This fact implies that the parameter estimatorsYij

will remain the same if the trait values are replaced by
their ranks. Thus, the proposed estimators are rank-
based and hence robust to outliers. Note that the un-
known transformation is estimated by ˆH(y) H(y) p

.ˆlog L(y)
Although it is a nonparametric maximum-likelihood

estimator, possesses the familiar asymptotic propertiesv̂

of a parametric maximum-likelihood estimator. Specif-
ically, is consistent, asymptotically normal, and as-v̂

ymptotically efficient, and its covariance matrix can be
estimated by the inversed Fisher information matrix of
(4). The asymptotic efficiency implies that is the mostv̂

efficient estimator among all valid estimators of , atv

least in large samples. The proofs of these results involve
very advanced mathematical arguments. The interested
readers are referred to appendix B of Lin (2004) for an
outline of arguments for this kind of problem. The de-
tailed proofs are available from the authors on request.

We can use the familiar maximum-likelihood statis-
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Figure 5 Type I error and power of likelihood-ratio tests with 500 sib trios at the nominal significance level of 0.01 under nonnormality.
The curves for the estimated and true transformations are indistinguishable.

tics to make inferences about . In particular, we canv

perform various hypothesis tests according to the ob-
jectives of the linkage study at hand. For example, we
can assess whether there is a major gene effect at the
examined locus by testing the null hypothesis 2H :j p0 ga

against the alternative or . We2 2 2j p 0 H :j 1 0 j 1 0gd A ga gd

can also test the null hypothesis of no additive major-
gene effect, , or the null hypothesis of no2H :j p 00 ga

polygenic effects, . For each hypothe-2 2H :j p j p 00 Ga Gd

sis test, we can calculate the likelihood-ratio statistic at
any position along the genome with

˜ ˆLR p �2[log L(v) � log L(v)] ,

where is the (restricted) maximum-likelihood estima-ṽ
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Table 2

Means and SDs of Parameter Estimators under Nonnormality,
with 200 Sib Pairs

MODEL

MEAN (SD) OF PARAMETER ESTIMATOR WITH

Unspecified
Transformation Known Transformation

b1
2jg b1

2jg

a �.486 (.115) .080 (.120) �.499 (.111) .081 (.121)
b �.486 (.115) .212 (.178) �.499 (.111) .217 (.179)
c �.486 (.114) .388 (.205) �.499 (.110) .398 (.205)
d �.493 (.118) .086 (.129) �.499 (.115) .086 (.127)
e �.494 (.117) .210 (.181) �.499 (.114) .211 (.176)
f �.497 (.117) .368 (.202) �.499 (.114) .369 (.192)

tor of under the null hypothesis. When we test a singlev

variance component, the asymptotic distribution of the
likelihood-ratio statistic is a half-and-half mixture of a

variable and a point mass at 0 (Self and Liang 1987).2x1

When multiple variance components are tested, the like-
lihood-ratio statistic has a more complex asymptotic
distribution that continues to be a mixture of dis-2x

tributions (Self and Liang 1987). The conventional LOD
score is simply .LR/4.6

The proposed method is reminiscent of the well-known
Cox (1972) regression analysis with survival data. In fact,
the Cox proportional hazards model can be written as
a semiparametric linear transformation model: H(Y) p

, where H is an unknown increasing functionTb X � e

and e has the standard extreme-value distribution. The
nonparametric maximum-likelihood estimators of andb

are exactly the familiar maximum partial-H(y)L(y) p e
likelihood estimator of the relative risk and the Breslow
(1972) estimator of the cumulative hazard function. It
is well known that the maximum partial likelihood es-
timator is rank based, the Breslow estimator is a step
function, and both estimators are statistically efficient.
Our estimators of and L have the same properties.b

Results

COGA Study

COGA is a six-center study aimed to detect and map
susceptibility genes for alcohol dependence and related
phenotypes (Begleiter et al. 1995). The study involved
105 families (typically 3 or 4 generations) with a total
of 1,214 members. The largest family size was 37. A
total of 992 individuals were genotyped at 285 autoso-
mal markers on 22 chromosomes, with an average in-
termarker distance of 13.5 cM. We considered the quan-
titative trait MAOB. MAOB is a mitochondrial enzyme
involved in the degradation of certain neurotransmitter
amines, specifically phenylethylamine and benzylamine.
Low platelet MAOB activity has been found to be as-

sociated with alcoholism (Major and Murphy 1978; Sul-
livan et al. 1979).

Information on MAOB activity in platelets was avail-
able for 904 of the 1,214 individuals. The mean MAOB
activity was 6.48, with an SD of 3.17 and a median
value of 6.17. Three outliers for MAOB activity—with
values of 33.18, 38.61, and 45.44—were clustered in a
single family; the values for the remaining individuals in
this family were 3.53 and 6.05. Figure 2 presents the
histograms of MAOB values with and without the three
outliers. With the outliers, the distribution is severely
right skewed and highly leptokurtic, with skewness of
4.02 and kurtosis of 40.7, as opposed to skewness of
only 0.41 and kurtosis of 0.01 without outliers. Of the
904 individuals with MAOB-activity information, 432
were male, with a mean value of 5.58 and a median
value of 5.36, and 472 were female, with a mean value
of 7.31 and a median value of 7.20. MAOB activity
tended to be lower for smokers than for nonsmokers,
with mean values of 5.61 versus 7.24 and median values
of 5.20 versus 7.22, respectively. MAOB activity also
varied by ethnicity, with mean values of 7.72, 6.17, and
7.15 and median values of 6.98, 5.87, and 7.04 for
ethnic groups “black, non-Hispanic,” “white, non-His-
panic,” and “white, Hispanic,” respectively. We included
age at interview, sex, ethnicity, and smoking status as
covariates in our analysis.

We calculated the IBD allele–sharing probabilities at
the 1-cM increment along the genome by using the com-
puter package SOLAR (Almasy and Blangero 1998). We
first performed the genomewide linkage scan of MAOB
activity using the existing variance-components method.
As shown in figure 1, significant evidence in favor of
linkage with MAOB activity was observed on chromo-
somes 1, 4, 9, and 12, with peak LOD scores of at least
6. The peak LOD score on chromosome 12 exceeded
12. When the three outliers were deleted, the evidence
of linkage completely disappeared. These results are simi-
lar to those of Barnholtz et al. (1999), who used the SAGE
FSP program to break up the data set into nuclear fami-
lies and then used a modified version of GENEHUNTER
(Kruglyak et al. 1996; Amos et al. 1997) to calculate
the multipoint IBD values. Clearly, the existing method
is highly sensitive to outliers in this case.

As is evident in figure 2, parametric transformations
are ineffective in handling outliers. The distributions are
right skewed under the square-root transformation and
left skewed under the log transformation. The kurtosis
values are 6.3 and 3.0 under the square-root and log
transformations, respectively. Under the square-root
transformation, the peak LOD scores for chromosomes
1, 4, 9, and 12 are 2.6, 3.24, 1.67, and 3.83, respectively.
Under the log transformation, the corresponding peaks
are 0.88, 1.08, 1.64, and 1.18. It is disconcerting that
these two transformations have conflicting results.
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Table 3

Means and SDs of Estimators of under Nonnormality, with 200 Sib Pairs2hg

MODEL

MEAN (SD) FOR ESTIMATOR WITH

Unspecified
Transformation

Specified Transformation

True Square Root Log Identity

a .043 (.063) .041 (.061) .047 (.070) .046 (.068) .080 (.132)
b .113 (.093) .109 (.090) .110 (.097) .109 (.097) .126 (.150)
c .207 (.104) .200 (.101) .193 (.112) .193 (.110) .184 (.162)
d .044 (.065) .043 (.064) .046 (.069) .046 (.067) .064 (.108)
e .107 (.088) .106 (.088) .103 (.091) .103 (.090) .103 (.125)
f .184 (.093) .185 (.094) .175 (.099) .176 (.098) .149 (.133)

Table 4

Type I Error and Power (%) of Likelihood-Ratio Tests
in the Presence of Outliers, with 200 Sib Trios

MODEL

TYPE I ERROR AND POWER (%) FOR

New Method Existing Method

a p 5 a p 1 a p .1 a p 5 a p 1 a p .1

a 5.16 1.10 .08 7.95 2.85 .78
b 24.12 8.71 1.73 25.29 10.86 3.39
c 58.84 32.74 11.65 54.64 31.22 13.13
d 5.29 1.01 .10 7.62 2.33 .60
e 22.37 7.45 1.32 23.02 9.51 2.42
f 53.00 27.71 8.37 49.59 27.32 10.01

We also applied the new method to the COGA data
and displayed the results in figure 3. No linkage signals
were detected, regardless of whether the outliers were
included or excluded. The two sets of LOD curves were
similar to each other, and no LOD scores were 11.2.
The new method is less sensitive to the outliers, so the
results should be more trustworthy.

Simulation Studies

We conducted extensive simulation studies to evaluate
the performance of the new method and to compare it
with that of the existing methods. We generated trait
values for sib trios from the model

H(Y ) p b X � b X � b � e , (5)ij 1 1ij 2 2ij ij ij

where is a binary variable withb p �0.5, b p 0.5,X1 2 1ij

0.5 probability of being 1, is an independent stan-X2ij

dard normal variable, consists of major gene and poly-bij

genic effects, and is the residual random error. Theeij

covariates and represent sex and standardizedX X1ij 2ij

age, respectively. We simulated a 100-cM chromosome
with 51 equally spaced markers by Markov chain under
the Haldane mapping function. Each marker consisted
of four equally frequent alleles. A true QTL was placed
at the center of the chromosome. For simplicity, we con-
sidered only additive genetic effects. We varied the vari-
ance parameters to yield different values of overall ge-
netic heritability and major-gene heritability . In2 2h hg

particular, we considered the following six scenarios.

Model
2jg

2jG
2je

2hg
2h

a .0 1.0 1.0 .0 .5
b .2 .8 1.0 .1 .5
c .4 .6 1.0 .2 .5
d .0 .6 1.4 .0 .3
e .2 .4 1.4 .1 .3
f .4 .2 1.4 .2 .3

Scenarios a and d pertain to the null hypothesis, the

others to alternative hypotheses. We considered 200 and
500 sib trios. For each setup, we simulated 10,000 data
sets.

In the first series of studies, we generated from theUij

model

U p b X � b X � b � e ,ij 1 1ij 2 2ij ij ij

and set . The resulting data have1�U 2ijY p e � (5 � U )ij ij

an average kurtosis of 44.5. After the square-root and
log transformations, the average kurtosis values are 5.82
and 4.83, respectively.

We analyzed the data in five different ways: the new
method and the existing methods with true transforma-
tion, log transformation, square-root transformation, and
no transformation. The existing method with the true
transformation pertains to the ideal situation in which
the normality assumption holds (after a known trans-
formation). Figure 4 shows the distribution of trait val-
ues for the first simulated data set. Neither the log trans-
formation nor the square-root transformation provided
a good normal approximation. The transformation es-
timated by the new method is almost identical to the
true transformation and approximated the normal dis-
tribution very well.

We assessed the performance of the likelihood-ratio
statistics for testing versus at the2 2H :j p 0 H :j 1 00 g A g

nominal significance level a of 5%, 1%, and 0.1%. Table
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Figure 6 Type I error and power of likelihood-ratio tests with 500 sib trios at the nominal significance level of 0.01 with the presence
of outliers.

1 presents the type I error and power at the true QTL
with , whereas figure 5 displays the results ofn p 200
the linkage scans on the whole chromosome at the 2-
cM increment with . The new method providesn p 500
accurate control of type I error in all cases and has vir-
tually the same power as the existing method with the
true transformation. Thus, the new method performs as
well as the parametric method under normality or with
known transformation. Without transformation, the type

I error of the existing method is very wrong. With the
log or the square-root transformation, the type I error
is still inflated. Although it has much smaller type I error
than the existing methods, the new method tends to be
more powerful than the existing methods with or with-
out transformation, especially when there are strong ge-
netic effects.

We also evaluated the estimators for the covariate ef-
fects, variance components, and heritability at the true
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Figure 7 Type I error and power of likelihood-ratio tests with 500 sib trios at the nominal significance level of 0.01 when the true
transformation is .H(y) p log (2y � 2)/2

QTL. As shown in tables 2 and 3, the estimators under
the new method performed as well as did the estimators
with known transformation. The estimators under the
existing method without transformation were quite bi-
ased, and the estimators under the existing method with
the log or square-root transformation also had bias.

To mimic the COGA data, we considered model (5)
with identity H but generated the residual error for 1%
of the families from the exponential distribution with

mean of 4. Table 4 shows the type I error and power of
the new and existing methods at the true QTL, and figure
6 displays the results for the genome scans. The new
method continues to provide accurate control of type I
error, whereas the type I error for the existing method
is vastly inflated. The former tends to be more powerful
than the latter when the genetic effects are strong. In the
power comparisons, we did not reset the critical values
to achieve the nominal significance levels. Such compari-
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Table 5

Type I Error and Power (%) of the New and Haseman-Elston
Methods for Log-Normal Traits, with 500 Sib Pairs

MODEL

TYPE I ERROR AND POWER (%) FOR

New Method Haseman-Elston Method

a p 5 a p 1 a p .1 a p 5 a p 1 a p .1

a 5.18 1.02 .10 4.38 .44 .01
b 22.45 7.80 1.42 9.59 1.51 .05
c 53.88 28.05 9.21 17.84 3.79 .32
d 5.01 .92 .02 4.61 .40 .00
e 20.16 6.26 .83 10.21 1.55 .15
f 49.23 22.76 5.71 19.18 4.41 .50

sons give unfair disadvantages to the new method, be-
cause the existing method has much higher type I error.
Were the existing method adjusted to have correct type
I error, its power would be drastically reduced.

For positive nonnormal trait data, one may consider
the Box-Cox transformation

r(y � 1)/r if r ( 0 ,(r)y p {log y if r p 0 ,

and include r as an unknown parameter in the para-
metric likelihood. If the true transformation belongs to
the Box-Cox family or can be approximated by a mem-
ber of the family, then this method will perform well.
For example, the true transformation in our first series
of simulation studies can be approximated very well by
the Box-Cox transformation with . In this case,r p 0.22
the Box-Cox transformation method performance was
very similar to our proposed method (results not shown).
As shown in figure 7, the Box-Cox transformation causes
inflated type I error and diminished power when the true
transformation cannot be approximated well by a mem-
ber of the Box-Cox family. The Box-Cox transformation
also performed poorly in the aforementioned simulation
studies with outliers (results not shown).

We also compared the new method with the revised
Haseman-Elston regression method (Elston et al. 2000).
We generated trait values for sib pairs from the model

. We regressed the cross product of thelog Y p b � eij ij ij

sib pair’s mean-centered trait values on the proportion
of alleles shared IBD by the pair. The results for 500 sib
pairs are shown in table 5. The new method again has
proper control of type I error. The Haseman-Elston
method has proper type I error at the nominal signifi-
cance level of 5% but is conservative at nominal levels
of 1% and 0.1%. These findings agree well with those
of Allison et al. (2000). The Haseman-Elston method is
substantially less powerful than the new method.

Discussion

In her invited editorial, Feingold (2002) described three
criteria for evaluating QTL-mapping methods: (1) the
power of the method is high when the trait is normally
distributed, (2) the type I error is correct regardless of
the characteristics of the data, and (3) the method is still
powerful when the trait is not normally distributed. The
existing variance-component methods satisfy the first
criterion but perform poorly on the second and third
criteria, whereas the new method meets all three criteria.
If one adds a fourth criterion that the method allows
arbitrary pedigrees and flexible genetic models, then the
new method is the only QTL-mapping method with all
these desirable properties.

The new method is independent of the estimation of
multipoint IBD allele–sharing probabilities. One can
choose appropriate software according to the size and
complexity of the pedigrees as well as the number of
markers. Software such as GENEHUNTER (Kruglyak
et al. 1996) and ACT (Amos 1994) performs exact mul-
tipoint calculations that are based on a hidden Markov
model (Lander and Green 1987) and can handle an ar-
bitrary number of markers for small pedigrees, whereas
the approximation method implemented in SOLAR (Al-
masy and Blangero 1998) can handle large pedigrees.

We have implemented an efficient and reliable algo-
rithm for the new method in a cost-free computer pro-
gram (D.Y.L.’s Web site). It is more time consuming to
fit the proposed semiparametric variance-components
model than the existing parametric models, but the com-
puting time is comparable and is not a concern with
current computing power. It took 1 s and 6 s on an IBM
BladeCenter HS-20 machine to perform the analysis at
one position for the COGA data with use of the existing
and new methods, respectively. For the simulations, at
one position, an analysis based on the existing and new
methods took 0.75 s and 1.8 s, respectively, for 200 sib
trios, and 5 and 10 s, respectively, for 500 sib trios. In
the simulation studies, we generated thousands of data
sets and fit millions of models. Our algorithm converged
in all cases.

In some studies, families are selected on the basis of
the trait values of their members. If the ascertainment
criterion is known, then we can divide the likelihood
by the probability that the proband falls into the speci-
fied ascertainment region. An alternative approach,
which does not require knowledge of the ascertainment
scheme, is to condition on the actual observed trait val-
ues. de Andrade and Amos (2000) conducted simulation
studies to assess the performance of these two methods
in the variance-component analysis. Their results show
that (1) there is little difference between the two meth-
ods of ascertainment correction, (2) failing to correct
for ascertainment affects the polygenetic and environ-



Diao and Lin: Mapping QTLs 109

mental components of variance but has little impact on
the linked major-gene component of variance, (3) re-
gardless of whether the data are corrected for ascer-
tainment, the power to detect a major locus is similar,
and (4) there is some inflation of type I error in the
presence of a large genetic background and a rare gene.
Ignoring selective sampling should have less impact on
the new method, since it is robust to the induced non-
normality. Further investigation is warranted.

In the COGA data, the three outliers are so extreme
that it is perhaps sensible to delete them. In general, it
may not be justifiable to delete outliers unless they are
known to be caused by measurement or recording error.
In many studies, the distinction between outliers and
nonoutliers is blurred, so that it is difficult to decide
which ones to delete. Another strategy is to Winsorize
the data—that is, to replace the outliers with some
smaller values—but this is also a highly subjective pro-
cess. The results of the variance-components analysis
can change dramatically dependent on how the outliers
are Winsorized, which ones are deleted, or which trans-
formation is used. The new method avoids any manipu-
lation of data and provides unique and reliable results.

Amos (1994) and Amos et al. (1996) considered the
generalized estimating-equations approach (Prentice and
Zhao 1991) for estimating variance components. This
method is more robust than the parametric-likelihood
method under nonnormality but is less efficient than the
latter. We expect our method to perform better than the
generalized estimating-equations approach, since it is ro-
bust against nonnormality and outliers and has the same
efficiency as the parametric-likelihood method under nor-
mality or with known transformation. It would be worth-
while to compare the two methods by simulation.

Blangero et al. (2000) proposed robust variance-
covariance estimators for the parameter estimators un-
der the normal model. They showed that the likelihood-
ratio statistics can be multiplied by a constant to yield
a robust test. Finding an appropriate constant is com-
putationally intensive and requires modeling assump-
tions. Although it may correct type I error, this approach

may not have good power. Another strategy is to obtain
P values by simulation, as recommended by Allison et
al. (2000). Like the use of robust variances, this approach
reduces the power. There have been some other sugges-
tions in the literature, but they are also unsatisfactory.

In some studies, the trait values are truncated because
of inability to detect values below (or above) certain
thresholds. One example is the coronary artery calcifi-
cation (CAC) data from the Family Heart Study (Hig-
gins et al. 1996). The distribution of CAC exhibits a
spike at the left end, since a large proportion of CAC
measures are recorded as 0 because they do not exceed
some threshold for detection. In addition, the positive
CAC scores are highly skewed. We are currently ex-
tending our idea for analysis of such data by using a
mixture model that formulates the probability of a posi-
tive CAC score with a logistic-regression model and the
distribution of the positive score with model (1). The
resultant procedure will be more robust than the para-
metric Tobit variance-component method of Epstein et
al. (2003).

In many longitudinal studies, such as the Framingham
Heart Study (Geller et al. 2003), quantitative traits are
measured repeatedly over time. In addition to the cor-
relation among different individuals of the same family,
there is within-subject correlation among the repeated
measures of the same individual. de Andrade et al. (2002)
extended the parametric variance-component approach
to account for the within-subject correlation. We are
currently exploring the extension of our approach to
this setting.
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Appendix A

Let , where is the kth order statistic of Y and K is the total number of distinct traita p L{Y }, k p 1, … ,K Yk (k) (k)

values. Note that is the jump size of at . The system of score functions—that is, the first derivativesa L(y) y p Yk (k)

of the log-likelihood function (4) with respect to the parameters —are given by(b, g, a , … ,a )1 K

n
� log L T �1p X V (H � X b) ,� i i i i

�b ip1

n
� log L 1 �V �Vi i�T T �1 �1p � tr V � (H � X b) V V (H � X b) ,�{ }i i i i i i i2 2 2( )�j 2 �j �jip1g g g



110 Am. J. Hum. Genet. 77:97–111, 2005

n
� log L 1 �V �Vi i�T T �1 �1p � tr V � (H � X b) V V (H � X b) ,�{ }i i i i i i i2 2 2( )�j 2 �j �jip1G G G

and

n n ni� log L 1 1 �H iT �1p I(Y p Y ) � I(Y � Y ) � (H � X b) V ,�� �ij (k) ij (k) i i i{ }�a a L(Y ) �aip1 jp1 ip1k k ij k

where

2�V /�j p S ,i g gi

2�V /�j p S ,i G Gi

T�H /�a p [I(Y � Y )/L(Y ), … ,I(Y � Y )/L(Y )] ,i k i1 (k) i1 in (k) ini i

and is the indicator function with a value of 1 if is true and of 0 otherwise. Here, , and and2 2I(A ) A g p (j ,j ) Sg G gi

are the estimated IBD allele–sharing probability matrix at the major locus and the expected IBD allele–sharingSGi

probability matrix for the ith family, respectively.
By setting the system of score functions to 0, we obtain the maximum-likelihood estimators . Weˆ ˆ ˆ ˆ(b,g,a , … ,a )1 K

then estimate by and estimate by . Note that and are step functions thatˆˆ ˆ ˆˆL(y) L(y) p � a H(y) log L(y) L HkY ≤y(k)

jump at the observed trait values only. This is similar to the Breslow estimator of the cumulative hazard function
and the Kaplan-Meier estimator of the survival function.

Web Resource

The URL for data presented herein is as follows:

D.Y.L.’s Web site, http://www.bios.unc.edu/˜lin (for the com-
puter program)
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